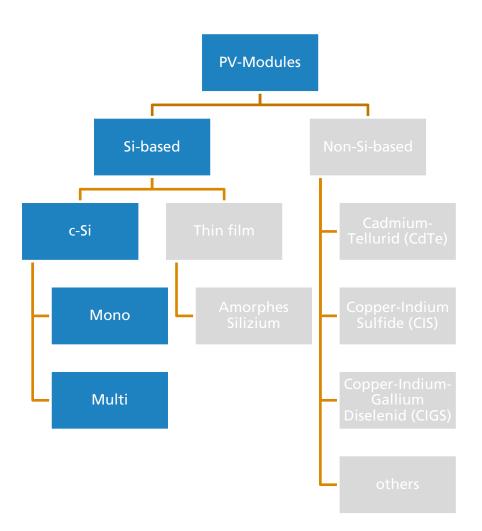
FRAUNHOFER CENTER FÜR SILIZIUM PHOTOVOLTAIK

Chancen und Herausforderungen des Recyclings von PV Anlagen – PV Module aus 100% recyceltem Silizium

29. August 2022 Peter Dold, Fraunhofer CSP


Inhalt

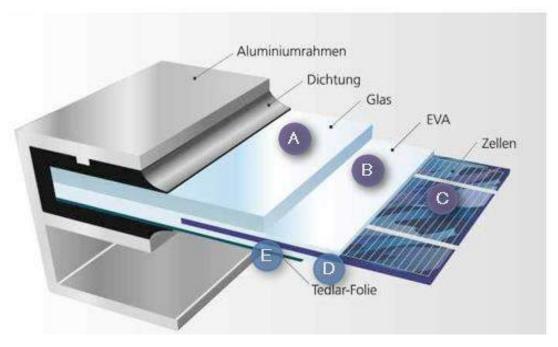
- Design und Aufbau von PV-Modulen
- Wertstoffmenge
- Recyclingverfahren
- Herausforderungen

PV-Technologien

- Kristalline, siliziumbasierte (c-Si) PV Module dominieren den Markt mit einem Anteil >95%
- Unsere Recyclingaktivitäten fokussieren sich auf c-Si Module

c-Si Standard Modul

Modul Design und Aufbau



http://www.luxor-solar.de/root/img/pool/download/pressemitteilungen/lx_pr_eco_smart_line_box_web.jpg

Komponenten

- A) Rahmen
- B) Junction Box
- C) Kabel

- D) Hersteller Label
- E) Laminatverbund
- F) Backrail

http://www.renewable-energy-concepts.com/german/sonnenenergie/solaranlage-solartechnik/solarmodule-aufbau.html

Laminat

- A) Frontglas
- B) EVA-Folie
- C) Solarzelle
- D) EVA-Folie
- E) Tedlar Folie / Rückseitenglas

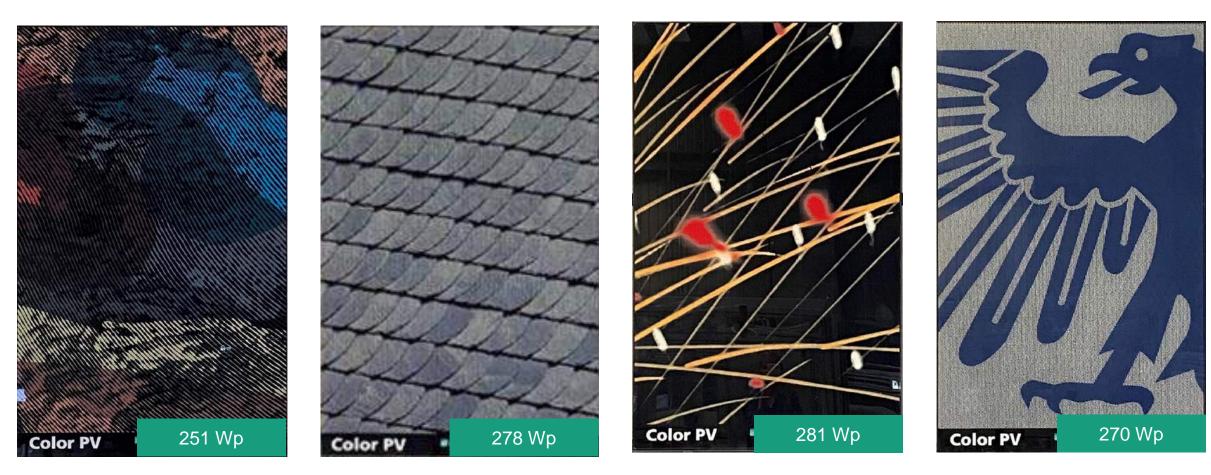
PV Global

Übersicht

Parameter	Value
PV market	>100 GW
Cumulative installation	>1 TW
PV power generation	>1.000 TWh
PV electricity share	≈3%

PV Module

Trends und Entwicklungen


- Effizienzsteigerung, Module liegen jetzt im 400 W Bereich.
- Tandem-Zellen sind in der Entwicklung.
- Eco-Design wird zunehmend wichtig.
- Integrierte PV (Gebäude, Fahrzeuge, Agro) gewinnt an Bedeutung – optische Erscheinung spielt hier eine große Rolle.

© Fraunhofer ISE/Foto: Dirk Mahler Pilotinstallation von MorphoColor® Farbschichten an der BIPV-Demonstrations-Stele vor dem Hauptgebäude des Fraunhofer ISE in Freiburg.

Neue Modulentwicklungen (CSP-IMWS): Digitally Printed Solar Modules -> BIPV

Examples of Individual Designs: Fotos and Power Performance

Individual designed modules with a size of 1.69 m x 1.05 m with power losses of 15-30% (compared to uncolored module)

Digitally Printed PV Modules (@ CSP-IMWS): Anwendungsbeispiel

Anwendungsbeispiel: Fassadengestaltung

Fotomontage, design example: Georg-Friedrich Händel hall with colored PV (design on behalf of CSP, architectural office B. Limpert)

Digitally Printed PV Modules (@ CSP-IMWS): Anwendungsbeispiel

Anwendungsbeispiel: Dachgestaltung historischer Gebäude

Fotomontage, design example: church with colored PV (design on behalf of CSP, architectural office B. Limpert)

Materialmenge

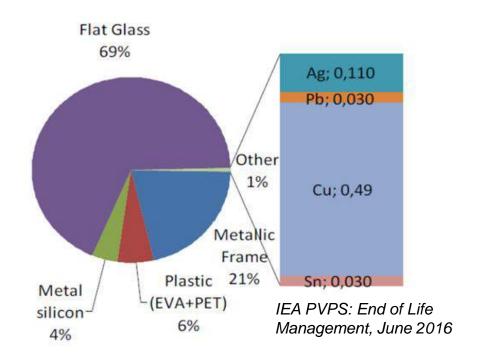
Global

	Inst. Capacity	Modules / t	Silicon / t	Organic / t	Aluminum / t	Glass / t
Germany	≈60 GW	≈5,000,000	>150,000	≈500,000	≈650,000	≈3,500,000
China	≈400 GW	≈35,000,000	≈1,000,000	≈4,000,000	≈5,000,000	≈28,000,000
World	>1,000 GW	≈90,000,000	≈3,000,000	≈10,000,000	≈12,000,000	≈65,000,000

- Ältere Module: höheres Gewicht pro kW_p
- Waferdicke nahezu gleich geblieben über die letzten 15 Jahre
- Zusammensetzung und Daten variieren stark, je nach Hersteller
- Typische Nutzungsdauer: 20-30 Jahre

Wir können heute über "einfach zu recycelnden PV Module" sprechen – sie werden in 30 Jahren zum Recycling zurückkommen. Wir müssen uns heute mit den annähernd 100 Mio. Tonnen existierender Module auseinandersetzen.

Materialverteilung


Zusammensetzung nach Gewicht

Durchschnittliche Modulzusammensetzung (basierend auf 22 Tonnen – Daten CSP)

	[kg]	[%]
Module	22,754	100
Glas/Folie/ Zellen	19,327	84,9
Rahmen	3,037	13.3
Junction Box	216	0.9
Kabel	173	0.8
Schrauben	1	0.004

Fraunhofer CSP

Laminatzusammensetzung	[%]
Glas	71
Zellen	3.2
Folien	11.6

In general

1 t EoL-Module	
125 - 200 kg	Aluminium
650 - 725 kg	Glas
30 - 40 kg	Silizium
60 - 110 kg	Kunststoff
0,5 - 1 kg	Silber

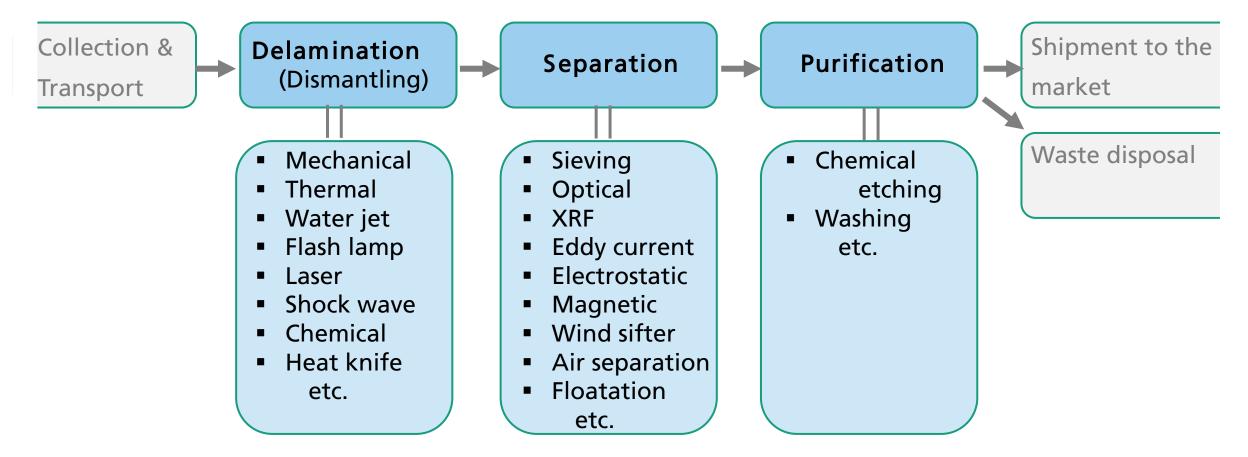
Situation

Gesetzliche Rahmenbedingungen in Deutschland

- End-of-Life Module gelten als Elektroaltgeräte:
 - Deponieren oder exportieren ist nicht erlaubt
 - Eine Recyclingrate >80% ist vorgeschrieben
 - B2C: Kostenlos; die Kosten werden über die Stiftung ear abgedeckt
 - B2B: nicht eindeutig definiert; am Ende ist der PV-Parkbetreiber in der Haftung

stiftung elektro-altgeräte register® **e e**

Elektrogesetz



PV Modulrecycling: ein 3-stufiger Prozess

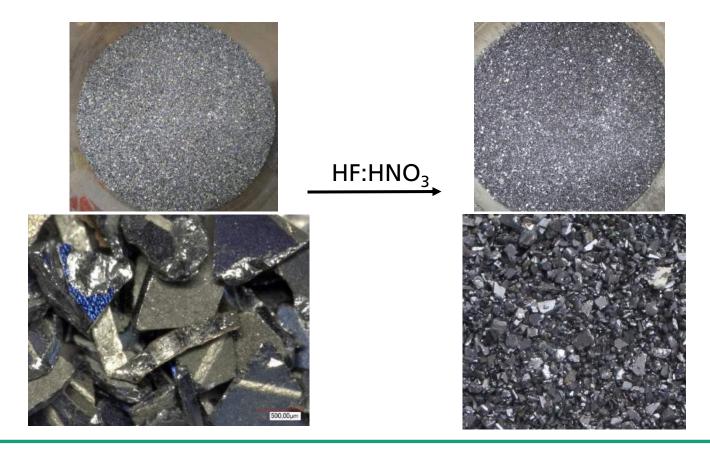
(Wie fast alle Recyclingprozesse)

Die meisten Techniken funktionieren gut, die entscheidende Frage ist: wie erreicht man einen hohen Durchsatz bei geringen Kosten.

Recycling von PV Modulen

Mechanische Delamination

Trennung von Glas, Folie, Zelle. (Bsp. Reiling GmbH).


Recycling von PV Modulen @ CSP

Trennung und chemisches Ätzen der Zellfragmente

Entfernen des Rückkontaktes, der Silberfinger, der Antireflexschicht und des Emitters.

Geschredderte Module: Trennung in Glas, Kunststoff und Solarzellenfragmente.

Kristallherstellung am Fraunhofer CSP

Verwendung von 100% recyceltem Silizium

G2 brick, quasi-mono, 60 kg

- Quasi-mono Kristallisation (Blockerstarrung).
- Ziehen von Einkristallen (Czochralski) aus der Schmelze.

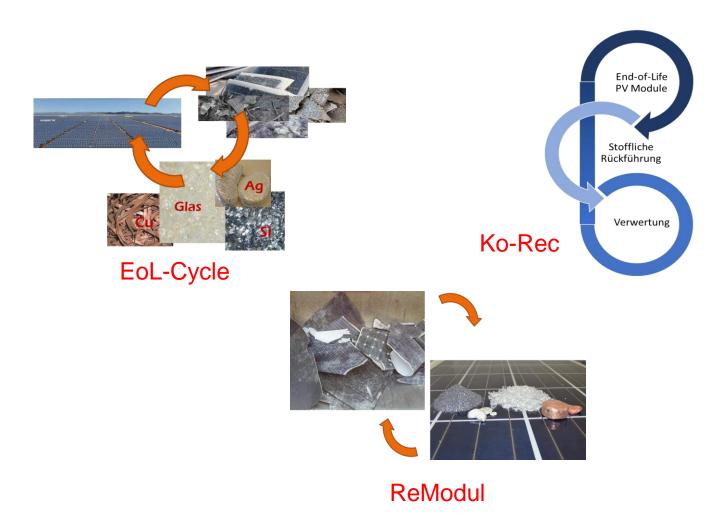
Czochralski-mono ingot from 100% SekuSil

Fraunhofer CSP – Wafer und Zellen aus 100% recyceltem Silizium

Standard Wafering Prozess mit Diamantdrahtsäge von Meyer-Burger

PERC-Zellen aus 100% recyceltem Silizium. Max. Zelleffizienz: 19,7%

=> Noch deutlich Raum zur Verbesserung – aber es wurde bewiesen, dass es geht.


Recycling von PV Modulen

Probleme und Herausforderungen

- Laminat / Folienverbindung ist äußerst stabil und zäh (sind ausgelegt für >30 Jahre im Feld).
- Viele unterschiedliche Module am Markt (>>1.000).
- Aktuell: alle Module sind mit Bleilot versehen; mit <0,5 kg/t, die Menge ist nicht hoch, aber muss berücksichtigt werden.
- Materialwert pro Modul beträgt ungef. 10 € (500 €/t) => große Mengen müssen verarbeitet werden.
- Transportwege sind wirtschaftlich kritisch.
- Integrierte PV: Nutzungsdauer von Gebäude / Fahrzeugen o.ä. ist deutlich unterschiedlich zu der Nutzungsdauer von PV Modulen.

We Highly Acknowledge the Financial Support!

Rescue, E², MetSeg, GeSiR etc.

Gefördert durch:

aufgrund eines Beschlusses des Deutschen Bundestages